

Indirect estimation of labour market characteristics in the functional areas of provincial capitals

Tomasz Józefowski^{1,2}, Kamil Wilak ^{1,2}

¹ Statistical Office in Poznań
 ² Poznań University of Economics and Business, Poland

Poznań, 18-19.11.2024

Plan prezentacji

Introduction

Methodology

Empirical study

Conclusions

Literature

Introduction

Functional urban areas of provincial capital cities selected for Integrated Territorial Investments (ITI) in the period 2014-2020

3

Introduction

Aims

- Estimation of labour market indicators in functional urban areas of provincial capital cities.
- Use of SPREE-type estimators to improve estimation quality.

Motivation

- Growing information needs of data users.
- Limitations of the direct estimator.
- Costs of sample surveys.
- The need to reduce the respondent burden.
- Established literature on indirect estimation.
- Practical applications of SPREE.

- Structure Preserving Estimators (SPREE) are a generalised class of synthetic estimators, i.e. those that rely on information from direct estimates.
- SPREE estimators can be used to estimate totals for small areas during intercensal periods or for more detailed domains.

	Domain 1	Domain 2		Domain K	
Area 1	X ₁₁	X ₁₂		X _{1K}	$Y_{1.}$
Area 2	X_{21}	X_{22}		X_{2K}	<i>Y</i> _{2.}
:		:	·	:	÷
Area A	X_{A1}	X_{A2}		X_{AK}	$Y_{A.}$
	$Y_{.1}$	Y.2		$Y_{.K}$	

- SPREE estimators rely on adjusted counts within the contingency table, obtained by applying the Iterative Proportional Fitting (IPF) method, so that they add up to known marginal totals.
- Input counts X_{a,k} inside the contingency table can come from a census or an administrative register, while reliable direct estimates from a survey (e.g. LFS) are used as marginal totals Y_a and Y_{.k} (a = 1, ..., A, k = 1, ..., K).

- Y_{ak}, X_{ak} denote values of the response variable and the proxy variable in a cell of a twoway contingency table, where a denotes the identifier of a small area, while j denotes levels of the grouping variable.
- Let $log Y_{ak}$, $log X_{ak}$ be expressed by a log-linear model:

$$\log Y_{ak} = \alpha_0^{\mathbf{Y}} + \alpha_a^{\mathbf{Y}} + \alpha_k^{\mathbf{Y}} + \alpha_{ak}^{\mathbf{Y}}, \tag{1}$$

$$\log X_{ak} = \alpha_0^X + \alpha_a^X + \alpha_k^X + \alpha_{ak}^X, \tag{2}$$

where:

•
$$\alpha_0^{Y} = \frac{1}{AK} \sum_{a} \sum_{k} \log Y_{ak}$$
 - general effect,
• $\alpha_a^{Y} = \frac{1}{K} \sum_{k} \log Y_{ak} - \alpha_0^{Y}$ - effect of area a ,
• $\alpha_a^{Y} = \frac{1}{K} \sum_{a} \log Y_{ak} - \alpha_0^{Y}$ - effect of k -th level of the grouping variable,
• $\alpha_{ak}^{Y} = \log Y_{ak} - \alpha_a^{Y} - \alpha_k^{Y} - \alpha_0^{Y}$ - interaction effect,
for $a = 1, \dots, A$ and $k = 1, \dots, k$.

f

SPREE estimator is based on the assumption that:

$$\alpha_{aj}^{Y} = \alpha_{ak}^{X}.$$
(3)

Assumption (3) can be relaxed by using a GLSM model and adopting the assumption about the existence of a proportional relationship between association structures of the response variable and the proxy variable. In this way we obtain a generalised SPREE (GSPREE):

$$\alpha_{ak}^{Y} = \beta \alpha_{ak}^{X}.$$
 (4)

The literature provides other modifications of this estimator as well as their applications.

Empirical study

Data:

- aggregated statistical data based on administrative registers (2017),
- Labour Force Survey (2017);

Domain:

 functional urban areas of provincial capital cities broken down by: (1) sex, (2) age groups (mobility age, non-mobility age);

Estimated parameter:

- the number of employed, unemployed and economically inactive persons,
- labour market indicators: economic activity rate, employment rate, unemployment rate;

Association structure:

- counts obtained from aggregated statistical data based on administrative registers,

Allocation structure:

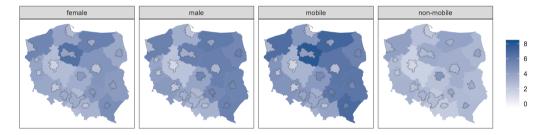
- LFS-based direct estimates of marginal totals in the target contingency table;

Methods:

- CAL, SPREE_{2,L}, SPREE_{3,L}, GLSM_{2,L}, GLSM_{35,L}.

Empirical study

One of the association-allocation structures used in the empirical study.


	Functional urban area			Other parts of the province			
	employed	unemployed	inactive	employed	unemployed	inactive	
mobility-age							
dolnośląskie	$ X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$	$X_{1,6}$	$Y_{1,.}$
kujawsko-pomorskie	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	$X_{2,6}$	Y _{2,.}
:			-		-	:	÷
zachodniopomorskie	$X_{16,1}$	$X_{16,2}$	$X_{16,3}$	$X_{16,4}$	$X_{16,5}$	$X_{16,6}$	Y _{16,.}
non-mobility age							
dolnośląskie	$ X_{17,1}$	$X_{17,2}$	$X_{17,3}$	$X_{17,4}$	$X_{17,5}$	$X_{17,6}$	$Y_{17,.}$
kujawsko-pomorskie	X _{18,1}	$X_{18,2}$	$X_{18,3}$	X _{18,4}	$X_{18,5}$	$X_{18,6}$	Y _{18,.}
:	:	:	:	:	:	:	:
zachodniopomorskie	$X_{32,1}$	$X_{32,2}$	$X_{32,3}$	X _{32,4}	$X_{32,5}$	$X_{32,6}$	Y _{32,.}
	Y.,1	Y.,2	Y.,3	Y.,4	Y.,5	Y.,6	

10

Empirical study

SPREE estimates of the unemployment rate in functional urban areas of provincial capital cities and the remaining parts of the provinces, 2017

11

Conclusions

- Estimates obtained by applying SPREE are consistent with direct estimates at higher levels of spatial aggregation.
- Compared with the direct estimator, SPREE estimators are characterised by better precision.
- Statistical data based on administrative registers seem to be a good source of auxiliary variables.
- The SPREE approach can be used to produce estimates for non-standard territorial domains, such as functional urban areas of provincial capital cities.

Literature

- Józefowski, T. (2022). Rynek pracy na obszarach funkcjonalnych miast wojewódzkich w świetle estymacji typu SPREE. PhD thesis, Poznan University of Economics and Business.
- Józefowski, T. Szymkowiak, M. (2013). Zastosowanie estymatora typu SPREE w szacowaniu liczby osób bezrobotnych w przekroju podregionów. Studia Oeconomica Posnaniensia, 1(10):120–136.
- Luna Hernandez, A. (2016). *Multivariate Structure Preserving Estimation for Population Compositions*. PhD thesis, University of Southampton.
- Purcell, N. J. Kish, L. (1980). Postcensal Estimates for Local Areas (Or Domains). International Statistical Review / Revue Internationale de Statistique, 48(1):3–18.
- Rao, J. M. K. Molina, I. (2015). Small Area Estimation. John Wiley and Sons, New Jersey, 2nd edition.
- Zhang, L. C. Chambers, R. L. (2004). Small area estimates for cross-classifications. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 66(2):479–496.

Thank you for your attention

poznan.stat.gov.pl